A New World of Possibilities

Using Solar Telescopes to do Double Star Speckle Interferometry

Richard Harshaw and Jimmy Ray

Phoenix, Arizona
Seriously into double stars!
Another Statistical Tool for Evaluating Binary Stars

Richard Harshaw
Brilliant Sky Observatory
Cave Creek, Arizona

Abstract: Down through the years, astronomers have proposed many ways to estimate the number of binary and optical pairs in a given section of sky. In this paper, I propose a simple test to determine whether a given pair of stars is binary or optical based on the proper motions of the two stars. It will be shown that there is a very high correlation between binary status and common proper motion and optical status and different proper motions.
I Had Stumbled Upon Short Arc Binaries

Green “+” signs are Micrometer

Blue “●” signs are Speckle Interferometry

Pink “○” signs are Photograph
What a Short Arc Looks Like
Classic Example
A Case Using Trendlines
Why Speckle Is Important

Micrometric measures always show significant scatter on close pairs.

Speckle measures show much less scatter on close pairs.
The Most Interesting Binaries

Need to have relatively short periods so we can “weigh” the stars

This in turn lets us fine-tune the H-R Diagram

Short periods imply very close separations

Wide pairs may take up to a million years to orbit; it may take millennia to gather enough data to solve the orbit
The Stats on the WDS

<table>
<thead>
<tr>
<th>Separation</th>
<th>Pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over 60"</td>
<td>68,272</td>
</tr>
<tr>
<td>15" to 30"</td>
<td>39,533</td>
</tr>
<tr>
<td>5" to 10"</td>
<td></td>
</tr>
<tr>
<td>1.5" to 2.5"</td>
<td></td>
</tr>
<tr>
<td>0.5" to 1.0"</td>
<td></td>
</tr>
</tbody>
</table>

Micrometer, etc.

Speckle
The 6th Catalog of Orbital Elements

2,494 Orbits

Masses computed on 4,988 stars

Orbits are graded from 1 (very good) to 9 (very iffy)
The 6th Catalog of Orbital Elements

Orbital Analysis

- 668 pairs
- 1,826 pairs

Chart showing the distribution of orbital elements with different size ranges:
- 10” and Wider: 668 pairs
- 5” - 10”: 1,826 pairs
- 2” - 5”: 668 pairs
- 1” - 2”: 1,826 pairs
- 0.5” - 1.0”: 668 pairs
- 0.0” - 0.5”: 1,826 pairs
The WDS shows 1,702 total records of double star measurements by Heliometer

Mean separation of 30.619”
Median separation of 10.475”
Leans towards much wider pairs!

Up to 2014, Heliometer systems had never been used for EMCCD Speckle Interferometry
The Physics of Convolution

David Fried, "Fried cells"

Kolmogorov
Enter Antoine Labeyrie (1970)
(Father of Speckle Interferometry)

Attainment of Diffraction Limited Resolution in Large Telescopes by Fourier Analysing Speckle Patterns in Star Images

A. Labeyrie
Observatoire de Meudon

Received January 23, 1970

In the more realistic case of a single telescope, the proposed technique seems capable of giving useful astronomical data on star features, with a resolution reaching 0.02″. Its application requires the largest possible telescope and sensitive image receivers such as image intensifiers or electronographic cameras. The technique appears to be limited to objects brighter than $m = 7$ and it does not seem possible to use it for discriminating faint stars against the sky background.
What We See at f50 (Yes, f50!)
Super Fast EMCCD Cameras

Up to 11,000 frames per second!
Composition of a FITS Cube

FITS = Flexible Image Transport System
Data Reduction

Trims out bad data and computes standard deviations, etc.

REDUC
Florent Losse

Plate Solve 3
David Rowe
Solving With Plate Solve 3- No Deconvolution
WDS 13491+2659
Plate Solve 3 With Deconvolution
After Cleanup
On this night, this Grade 2 Orbit had a separation of 2.963” and position angle of 184.8°.

We are within 0.002” of arc on rho and ~50° off on theta, but then we did not correct for field rotation yet.

Accuracy ~ 1,000 x micrometer!
Conclusions

Solar telescopes / heliostats CAN be used for speckle if properly collimated

With most solar telescopes in heavy use during the day and mostly idle at night, a whole new instrument world opens for astronomers (both professional and lay) to do serious binary star research